Scott convergence and fuzzy Scott topology on L-posets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantale-valued fuzzy Scott topology

The aim of this paper is to extend the truth value table oflattice-valued convergence spaces to a more general case andthen to use it to introduce and study the quantale-valued fuzzy Scotttopology in fuzzy domain theory. Let $(L,*,varepsilon)$ be acommutative unital quantale and let $otimes$ be a binary operationon $L$ which is distributive over nonempty subsets. The quadruple$(L,*,otimes,varep...

متن کامل

Topological Scott Convergence Theorem

Recently, J. D. Lawson encouraged the domain theory community to consider the scientific program of developing domain theory in the wider context of T0 spaces instead of restricting to posets. In this paper, we respond to this calling with an attempt to formulate a topological version of the Scott Convergence Theorem, i.e., order-theoretic characterisation of those posets for which the Scott-co...

متن کامل

The Scott Topology . Part II

The following propositions are true: (1) Let X be a set and F be a finite family of subsets of X. Then there exists a finite family G of subsets of X such that G ⊆ F and ⋃ G = ⋃ F and for every subset g of X such that g ∈ G holds g 6⊆ ⋃ (G \ {g}). (2) Let S be a 1-sorted structure and X be a subset of the carrier of S. Then −X = the carrier of S if and only if X is empty. (3) Let R be an antisy...

متن کامل

The Scott Topology . Part II 1

Mizar formalization of pp. 105–108 of [10] which continues [27]. We found a simplification for the proof of Corollary 1.15, in the last case, see the proof in the Mizar article for details. One can prove the following propositions: (1) Let X be a set and F be a finite family of subsets of X. Then there exists a finite family G of subsets of X such that G ⊆ F and G = F and for every subset g of ...

متن کامل

Two Counterexamples Concerning the Scott Topology on a Partial Order

We construct a complete lattice Z such that the binary supremum function sup : Z × Z → Z is discontinuous with respect to the product topology on Z × Z of the Scott topologies on each copy of Z. In addition, we show that bounded completeness of a complete lattice Z is in general not inherited by the dcpo C(X,Z) of continuous functions from X to Z where X may be any topological space and where o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Mathematics

سال: 2017

ISSN: 2391-5455

DOI: 10.1515/math-2017-0067